حدسیه آسلاندر-ریتن روی حلقه های گرنشتاین

thesis
abstract

در سال 1975، آسلاندر و ریتن حدسیه ای را مطرح کردند که به حدسیه ی آسلاندر-ریتن معروف است و بیانگر آنست که اگر ? یک جبر آرتینی و? یک ?- مدول با تولید متناهی باشد و برای هر i>0، ext_?^i (?,???)=0 آن گاه مدول? تصویری است. این حدسیه روی حلقه ی تعویضپذیر و نوتری r به شرط arc معروف است. هدف این پایان نامه بررسی حدسیه ی آسلاندر-ریتن روی حلقه های گرنشتاین است.

similar resources

حدس آسلاندر-ریتن و دوگانی آسلاندر-ریتن

حدس ناکایاما یکی از مهمترین حدس ها در نظریه حلقه هاست و حدس آسلاندر-ریتن ارتباط بسیار نزدیکی با آن دارد. در این پایان نامه ابتدا نشان می دهیم اگر موضعی سازی یک حلقه گرنشتاین در تمام ایده آلهای اول از ارتفاع کمتر یا مساوی ? در حدس آسلاندر-ریتن صدق کند، آنگاه موضعی سازی این حلقه در تمام ایده آلهای اولش در حدس آسلاندر-ریتن صدق می کند. از این مطلب نتیجه می گیریم که هر حلقه نرمال گرنشتاین و هر حلق...

15 صفحه اول

حلقه های منظم فان نیومن گرنشتاین قوی

در اینجا ما حلقه هایی را معرفی و مطالعه می کنیم که روی انها همه مدولها تخت گرنشتاین قوی هستند. همان طور که در حالت مقدماتی حلقه هایی را که روی انها همه ی مدولها تخت هستند، منظم فان نیومن می نامیم. در اینجا نیز این حلقه ها را حلقه های منظم فان نیومن گرنشتاین قوی می نامیم. همچنین با ارایه مثالهایی از حلقه هایی که روی انها همه ی مدولها ، تخت گرنشتاین هستند، اما تخت گرنشتاین قوی نیستند متذکر می شو...

15 صفحه اول

انتقال بُعدهای گرنشتاین توسط همومرفیسم های حلقه

نظریه ی بُعدهای گرنشتاین روی حلقه های جابجایی و نوتری مبحث بسیار مهمی است و یک مسئله مهم در آن این است که بدون استفاده از تحلیل ها خصوصیات مدول هایی که در مورد آنها این ناورداها متناهی هستند را پیدا کنیم. اخیرا این مسئله برای بُعدهای گرنشتاین یکدست و گرنشتاین تصویری روی حلقه های موضعی حل شده است. در این پایان نامه جوابی برای بُعد گرنشتاین انژکتیو ارائه می دهیم. بعلاوه، دو فرمول برای بُعد گرنشتاین ا...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023